¿Qué es el data analytics?
Se trata del proceso mediante el que se analizan datos crudos a fin de responder preguntas y llegar a conclusiones prácticas. Muchas de estas técnicas han llegado a automatizarse hasta llegar a ser procesos mecánicos. Para eso, se hace uso de algoritmos que sintetizan la información para que resulte más fácil de digerir por las personas.
Mediante las técnicas de data analytics es posible encontrar tendencias y mediciones que de lo contrario habrían sido pasadas por alto dentro de la enorme cantidad de información con la que se suele trabajar. Estos datos pueden usarse para optimizar procesos y aumentar la eficiencia de la empresa.
¿Cuál es la importancia del data analytics?
Es importante porque permite que las empresas optimicen su desempeño. Así, implementarla dentro del modelo de negocios significa que las empresas pueden reducir costos al identificar formas más eficientes de funcionar, así como una cantidad enorme de información.
Una empresa también podría usar data analytics para analizar las preferencias y satisfacción de los clientes y así tomar mejores decisiones de negocios. Todo ello puede hacer que se ofrezca mejores productos y servicios.
¿Cómo funciona data analytics?
Data analytics es un término amplio que comprende muchos tipos diferentes de análisis de datos. Casi cualquier clase de información puede someterse a las técnicas de data analytics a fin de mejorar el funcionamiento interno de una empresa o sistema.
Por ejemplo, las empresas de manufactura a menudo registran el tiempo de ejecución y de inactividad de varias máquinas. Esto a fin de analizar la información y crear un plan que administre mejor las cargas de trabajo y alcanzar un pico de eficiencia en el trabajo.
Sin embargo, data analytics puede hacer mucho más que simplemente señalar las falencias en la producción. Las empresas de contenido usan muchas de estas mismas técnicas para mantener a sus visitantes haciendo clic y viendo contenido en la web.
El proceso de data analytics
Se trata de un procesamiento que requiere seguir diferentes pasos:
1.- El primer paso consiste en determinar los requisitos de información o cómo los datos se encuentran agrupados. Estos podrían dividirse en base a edad, ingresos, género, etc. Todos aquellos valores pueden ser numéricos o separarse por categorías.
2.- El segundo paso es el proceso de recolección de datos. Esto podría hacerse por diferentes medios como computadoras, fuentes online, cámaras, fuentes ambientales, personal, etc.
3.- Una vez que se obtiene la información, esta debe ser analizada. Ese proceso puede llevarse a cabo en una hoja de cálculos u otro software similar en la que es posible gestionar datos estadísticos.
4.- Luego, antes de empezar el análisis de la información, se procede a limpiarla. Aquello significa que la data es revisada con cuidado para asegurarse de que no haya errores, duplicados o que no se encuentre incompleta. Este paso ayuda a corregir cualquier falla antes de que sean enviadas al analista de datos.
Tipos de data analytics
1.- Descriptive analytics
Consiste en describir lo que ha sucedido en un periodo determinado de tiempo. ¿El número de impresiones o visualizaciones ha subido? ¿Las cifras de ventas en este mes son más altas que las del mes anterior?
2.- Diagnostic analytics
Esta se enfoca en explicar por qué suceden las cosas y el diagnóstico. Esto requiere el uso de diferentes tipos de información y plantear diferentes hipótesis. ¿Fue un factor externo como el clima lo que afectó la venta regular de los productos? ¿La última campaña de marketing tuvo algún impacto en las ventas?
3.- Predictive analytics
Aquí nos enfocamos en la predicción y los eventos que sucederán en el futuro cercano. ¿Qué sucedió con las ventas la última vez que hubo un cambio súbito en el clima? ¿Cuántos modelos de predicción de clima muestran cambios importantes en el verano que se acerca?
4.- Prescriptive analytics
Este sugiere un curso de acción. Por ejemplo, si la mayoría de los modelos de predicción de clima señalan que la posibilidad de un cambio importante en el clima es mayor del 58%, lo más recomendable será tomar las medidas apropiadas para que la producción no se vea afectada como añadir un turno nocturno a la producción.
Ventajas para las empresas
Por medio del Big Data Analytics las empresas pueden incrementar sus ventas mediante la mejora en las ofertas a los clientes. Además, toman mejores decisiones al momento de ofrecer un nuevo producto o servicio en el mercado. A través de esos datos prevén si al usuario le puede gustar y responderá positivamente. En este mundo, cada movimiento que se haga es de gran valor e importancia.
También con el analytics las compañías disminuyen los gastos en cuanto a almacenamiento de la información. Porque les permite recolectar datos y guardarlos sin necesidad de hacer grandes inversiones. Hay herramientas en la nube que permiten su implementación a muy bajo costo. Hay muchas maneras de recolección para lograr almacenar una gran cantidad de data y luego procesarla, cruzarla y utilizarla.